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Abstract: An efficient fragment-based approach for predicting the ground-state energies and structures of
large molecules at the Hartree-Fock (HF) and post-HF levels is described. The physical foundation of this
approach is attributed to the “quantum locality” of the electron correlation energy and the HF total energy,
which is revealed by a new energy decomposition analysis of the HF total energy proposed in this work.
This approach is based on the molecular fractionation with conjugated caps (MFCC) scheme (Zhang, D.
W.; Zhang, J. Z. H. J. Chem. Phys. 2003, 119, 3599), by which a macromolecule is partitioned into various
capped fragments and conjugated caps formed by two adjacent caps. We find that the MFCC scheme, if
corrected by the interaction between non-neighboring fragments, can be used to predict the total energy
of large molecules only from energy calculations on a series of small subsystems. The approach, named
as energy-corrected MFCC (EC-MFCC), computationally achieves linear scaling with the molecular size.
Our test calculations on a broad range of medium- and large molecules demonstrate that this approach is
able to reproduce the conventional HF and second-order Møller-Plesset perturbation theory (MP2) energies
within a few millihartree in most cases. With the EC-MFCC optimization algorithm described in this work,
we have obtained the optimized structures of long oligomers of trans-polyacetylene and BN nanotubes
with up to about 400 atoms, which are beyond the reach of traditional computational methods. In addition,
the EC-MFCC approach is also applied to estimate the heats of formation for a series of organic compounds.
This approach provides an appealing approach alternative to the traditional additivity rules based on either
bond or group contributions for the estimation of thermochemical properties.

1. Introduction

The development of linear-scaling algorithms for electronic
structure calculations has been an active field in the past decade.
Such developments would make ab initio quantum chemistry
calculations become possible for molecules with thousands of
atoms, greatly expanding the applications of computational
chemistry. At the Hartree-Fock (HF) and density functional
theory (DFT) levels, the conventional high power scaling
behavior (O(N3) or worse) of several key steps with the system
size has been reduced to near-linear scaling in the large molecule
limit. The fast multipole methods reduce the calculation of the
Coulombic matrix from O(N2) to O(N),1-4 and both the “order-N
exchange”5 and “near-field-exchange”6 methods allow linear
scaling to be achieved in the calculation of the exchange matrix
for large molecules.7 For very large molecules, the O(N3) Fock
matrix diagonalization will become the dominant time-consum-
ing step. Among approaches replacing the diagonalization of

the Fock matrix, density matrix search methods have been
proven to be an efficient linear-scaling approach.8 A combination
of these methods has enabled single-point HF calculations of
systems containing several thousands of basis functions to
become possible. In addition to this category of linear-scaling
algorithms that are aimed to calculate the whole system at once,
there also exists a category of fragment-based approaches,9-23

which are capable of reproducing ab initio HF or post-HF results
of large molecules quite accurately but with much fewer
computational costs. The basic ideas of these fragment-based
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approaches are to divide a large molecule into a series of
fragments, then perform conventional quantum chemical cal-
culations on fragments, and finally construct the properties, such
as electron density and the HF energy, of the whole molecule
in some way. Depending on different ways of treating covalent
bonds that join fragments, many fragment-based approaches
have been proposed in the literature in recent years. For instance,
Yang and co-workers developed the divide-and-conquer (DC)
method,9-11 Mezey and Exner developed the adjustable density
matrix assembler (ADMA) approach,12-14 Zhang and co-
workers developed the molecular fractionation with conjugated
caps (MFCC) approach,15,16 and Kitaura et al. proposed the
fragment molecular orbital (FMO) method.20-23 The compari-
sons of these approaches and other developments3,7,24-31 with
conventional HF or DFT calculations for some kinds of
macromolecules have demonstrated the accuracy and compu-
tational linear-scaling behavior of fragment-based approaches.

On the other hand, it is well-known that the computational
cost of the traditional post-HF (or electron correlation) methods
with the molecular size (at least O(N5)) is even higher than that
of the HF method. To extend correlation calculations to large
systems, some lower-order even linear-scaling local correlation
methods within the coupled cluster (CC) theory32-47 and
Møller-Plesset perturbation theory (MPPT)44-46,48-66 have been
developed.

The central idea of these local correlation (LC) methods
is to recast the traditional MPPT and CC equations in the
localized molecular orbital (LMO)32-38,59-65 or atomic orbital
(AO)41-46,48-56 basis so that the “quantum locality” of the
electron correlation problem can be exploited. It has been
demonstrated that linear scaling of computational time with
molecular size can be achieved in local Møller-Plesset (MP)
and coupled cluster (CC) calculations of large molecules.
Moreover, these local correlation methods are shown to be
capable of recovering more than 99.0% of the correlation energy
obtained in the corresponding conventional CC and MP calcula-
tion by using typical thresholds. Nevertheless, at present the
computational cost of these LC methods is still demanding since
they achieve linear scaling only in the large molecule asymptote.

A few linear-scaling fragment-based methods have also been
developed for correlation calculations on large molecules.47,66-69

Within these fragment-based methods, the total electron cor-
relation energy of a large system is estimated as the sum of the
intrafragment and interfragment correlation contributions, which
can be approximately obtained from correlation calculations on
fragments or combined fragments. The implicit assumption
exploited in these methods is that the intrafragment and
interfragment correlation energies are transferable from these
fragments to the whole system due to the similarity between
LMOs in fragments and those in the whole molecule. These
methods include, for example, the FMO-based second-order
Møller-Plesset perturbation theory (FMO-MP2) proposed by
Fedorov and Kitaura,66 the incremental method proposed by

Stoll,67-69 and a MFCC-based approach proposed by us.47

Among these fragment-based methods, the MFCC-based ap-
proach is the simplest one but its accuracy is competitive with
other more sophisticated local correlation methods.59-65

In this article, our aim is to introduce an efficient fragment-
based approach that can predict the total energy of a large
molecule at the HF and post-HF levels with good accuracy with
low computational costs. This approach can be formally derived
from a new energy decomposition analysis of the HF total
energy proposed in this work. With this approach, an optimiza-
tion algorithm is proposed and implemented that will make
geometry optimizations of large molecules with hundreds of
atoms become feasible at the present time. In addition, the
present fragment-based approach will also be applied to estimate
the heats of formation for gas-phase compounds from structur-
ally similar small species. Different from the well-known bond
or group additivity approaches,70,71 the present approach pro-
vides an alternative appealing approach for chemists to under-
stand and predict the physical and chemical properties of a huge
amount of chemical compounds.

This article is organized as follows. In section II, we first
introduce a new energy decomposition analysis of the HF total
energy. Next, on the basis of this energy decomposition analysis,
the energy-corrected MFCC (EC-MFCC) approach is proposed
for calculating the total energy of large molecules at the HF
and post-HF levels. Then, an optimization algorithm for
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geometry optimizations of large molecules is proposed. In
section III, we first validate the accuracy of the EC-MFCC
approach by applying it to calculate the total energies for a broad
range of chemical systems. Then, the EC-MFCC optimization
algorithm is applied to fully optimize the structures of long
oligomers oftrans-polyacetylene (trans-PA) and BN nanotubes,
in which the largest system contains about 400 atoms. In
addition, the heats of formation of some organic compounds
are estimated to further illustrate the use of the present approach.
Finally, a brief summary is given in section IV.

2. Methodology

2.1. The Energy Decomposition Analysis at the HF Level.It is
well-known that the total energy of a molecule at the HF level can be
expressed as:

whereP is the density matrix,Hcore is the core-Hamiltonian matrix,
andF denotes the Fock matrix that contains a one-electron partHcore

and a two-electron part that depends on the density matrixP and a set
of two-electron integrals over basis functions. According to eq 1, one
can see that the total energy can be decomposed into the sum of the
single-atom, two-atom, three-atom, and four-atom terms if the basis
functions are centered at the atoms. More generally, if several given
atoms are combined to form a fragment, the total energy can be similarly
divided into the sum ofn-fragment terms (n ) 1-4). For instance, if
a system is divided intoN fragments, the total energy can be
decomposed as below

whereEI represents the intrafragment energy within the fragmentI,
EIJ is the energy contribution within a combined fragmentIJ composed
of fragmentsI andJ, andEI,J stands for the two-body interaction energy
between fragmentsI andJ. In a similar manner,EI,J,K andEI,J,K,L denote
the three-body and four-body terms, respectively. It should be pointed
out that the expansion of the total energy into the sum ofn-body (n )
1-4) terms as in eq 2 is complete for arbitrary molecular systems,
since all the one-electron or two-electron integrals involve at most four
atoms or four fragments. A similar energy decomposition scheme was
proposed in the fragment molecular orbital method,20 but different
formulas were defined for then-body contributions.

Now we want to demonstrate the features of the energy decomposi-
tion analysis (EDA) described above. First, we take dodecane (C12H26)
as a model system. The geometry of this molecule is optimized at the
HF/6-31G level with the Gaussian 03 package.72 By partitioning this
molecule into six fragments (each fragment consists of two carbon

atoms), we have calculated all then-body contributions at the
HF/6-31G level according to the present EDA scheme, with part of
the results collected in Table 1. As seen from Table 1, the sum of the
intrafragment energies accounts for more than 99% of the total energy.
Among the remaining terms, the total two-body terms make the most
important contribution. Clearly, the magnitude of a given two-body
term decreases rapidly with increasing distance between two fragments.
The total three-body terms still contribute significantly, especially when
three fragments are spatially close to each other. For example,E1,2,3 is
even larger thanE1,3 in magnitude. For a trimerIJK, the data shown in
Table 1 show that its contribution depends strongly on its spatial
“compactness”. A similar trend also exists for the four-body terms,
but the total four-body interaction energies are about 3 orders of
magnitude smaller than the total three-body contributions. From the
discussions above, one can clearly see that the order of the totaln-body
contributions to the total energy obtained by the present EDA scheme
is in accord with the intuition of chemists. On the other hand, it is
interesting to know whether the calculated intrafragment and inter-
fragment contributions are approximately transferable in a series of
structurally similar compounds. For this purpose, we have presented
all the one-body energies and somen-body (n g 2) interaction energies
of octane (C8H18) in Table 1, with each fragment being the same as
that in dodecane. As one can see, the intrafragment energies are almost
identical for the terminal fragments in both molecules and are within
the 0.30 milliHartree (mH) for the next-terminal fragments. Among
the two-body terms,E1,2 differs by about only 0.2 mH from octane to
dodecane, and the difference ofE1,3 in both molecules is even smaller.
Similarly, the termE1,2,3 in both molecules varies by only 0.03 mH.
The near-equivalence of these terms can be attributed to the fact that
the fragments 1, 2, and 3 (shown in Table 1) have analogous
neighboring groups in these two molecules. Thus, both the intrafragment
and interfragment contributions are found to be highly transferable if
the fragments involved have similar local environments in different
systems. To conclude from the discussions above, the present EDA

(72) Frisch, M. J. et al.Gaussian 03, revision B.04; Gaussian, Inc.: Wallingford,
CT, 2004.
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Table 1. Intrafragment and Interfragment Energies (au) of C8H18
and C12H26 Calculated at the HF/6-31G Level

C8H18 C12H26

components energies components energies

One-Body Terms One-Body Terms
E1 -78.58259 E1 -78.58261
E2 -77.96443 E2 -77.96472
E3 -77.96443 E3 -77.96480
E4 -78.58259 E4 -77.96474

E5 -77.96459
E6 -78.58257

Two-Body Terms Two-Body Terms
E1,2 -6.03330E-2 E1,2 -6.0134E-2
E1,3 -8.65634E-3 E1,3 -8.6692E-3
E1,4 -6.96346E-5 E1,4 7.3123E-5

E1,5 1.4560E-5
E1,6 7.5777E-6

Three-Body Terms Three-Body Terms
E1,2,3 -1.16498E-2 E1,2,3 -1.1625E-2
E1,2,4 1.00788E-4 E1,2,4 3.1972E-5

E1,2,5 -6.4807E-5
E1,2,6 -2.1953E-5

Four-Body Term Four-Body Terms
E1,2,3,4 -2.65493E-5 E1,2,3,4 -4.5985E-5

E1,2,3,5 -3.2165E-5
E1,2,3,6 -5.9300E-9

total energy -313.30844 total energy -469.38214
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procedure has two important features: one is the fast decay of the
calculatedn-body (n g 2) interaction energies with the largest distance
between any two fragments (ofn fragments involved), and the other is
the good transferability of then-body contributions within the structur-
ally analogous systems.

It should be mentioned that the correlation energy can also be
decomposed into the sum ofn-atom (or body) (n ) 1-4) terms or the
sum of the atom pair interactions (after partial summation of three-
and four-atom terms), as discussed by Ayala and Scuseria.73 Their
calculations also showed the fast decay of the atom pair interactions
with the distance between atoms. Thus, the total energy of a molecule,
at the HF or post-HF level, can always be partitioned into the sum of
the one-, two-, three-, and four-atom contributions. Due to the
transferability of then-body contributions within the structurally
analogous systems, such an energy decomposition scheme could provide
a theoretical foundation for the following fragment-based approach or
the well-known bond or group additivity rules,70,71 which have been
widely used to understand and predict the physical and chemical
properties of a huge amount of chemical compounds.

2.2. The Energy-Corrected MFCC Approach for Estimating the
Total Energy of Macromolecules.Due to the features of then-body
(n g 2) interaction energies, as described above, eq 2 can be used to
devise an approximate approach for estimating the total energy in large
molecules at the HF level. Since then-body (n g 2) interaction energies
decrease rapidly with the largest separation between any two fragments
of n fragments involved, only those significant terms with fragments
spatially close to each other are required to be included in eq 2 for a
given accuracy. Due to the good transferability of then-body contribu-
tions in a homologous series of compounds, then-body contributions
can be derived from the EDA calculations on small systems. Thus,
one could approximately determine the total energy of large molecules
at the HF level from HF calculations on a series of small systems.

Now we will introduce a very simple procedure to implement these
ideas. First, a large molecule is partitioned into various fragments.
Normally, neighboring fragments are connected by a single covalent
bond. Second, for each fragment we cap it with its local environments
(environmental groups are normally no smaller than the selected
fragment) and add hydrogen atoms (if necessary) to those terminal non-
hydrogen atoms in environmental groups to form complete caps. For
each cut bond, a right cap is constructed to mimic the rest of the
molecule to the right, and similarly a left cap is to mimic the rest of
the molecule to the left. For simplicity, these two caps are said to form
conjugated caps. Take 1-decanol as an example; we illustrate this

fragmentation-and-capping scheme in Figure 1a. This scheme, termed
by MFCC, was first proposed by Zhang and Zhang.15 This approach
has been employed to calculate interaction energies between small
molecules and biological molecules,15,16 the electron density,17,18 and
kinetic energy19 of large molecules. However, this approach has not
been used to calculate the total energy of large molecules in the simple
way described below. For a general molecule, a schematic picture of
the MFCC scheme is shown in Figure 1b. A large systemA is
partitioned into two large fragmentsI andJ. Similarly, fragmentI is
further divided into two subunitsI1 and I2, and fragmentJ is further
divided into two subunitsJ1 andJ2. For convenience, a small part of
J2 capped with hydrogen atoms from the right is denoted as [J2], and
the substructure that consists ofJ1 and [J2] is denoted as a capJ̃1.
Assume that fragmentI capped byJ̃1 forms a subsystemX, fragment
J capped byĨ2 forms a subsystemY, and two conjugated capsĨ2 andJ̃1

form a subsystemP. According to eq 2, the total energies of the whole
system and these subsystems can be approximately calculated as below:

In the equations above, some implicit assumptions are made. For
example, the four-body term and some three-body terms such asEI1,J1,J2

are totally ignored in all these equations due to their negligible
contributions. The one-body, two-body, and three-body energies are
assumed to be transferable for those fragments with analogous
neighboring groups in different systems. Combining these four equations
together, one can obtain a simple relationship:

This relationship clearly shows that the total HF energy of the whole
large systemA can be approximately determined from HF calculations
on subsystemsX, Y, andP. In the following, for convenience we call
subsystems constructed from a fragment capped by its local environ-(73) Ayala, P. Y.; Scuseria, G. E.Chem. Phys. Lett.2000, 322, 213.

Figure 1. (a) Capped fragments and conjugated cap for 1-decanol (the target molecule). (b) An illustration of fragments, caps, and conjugated caps for a
general molecule.

EHF(A) ≈ EI1 + EI2 + EJ1 + EJ2 + EI1,I2 + EI2,J1 + EJ1,J2 +
EI1,J1 + EI2,J2 + EI1,I2,J1 + EI2,J1,J2 (7)

EHF(X) ≈ EI1 + EI2 + EJ1 + E[J2] + EI1,I2 + EI2,J1 + EJ1,[J2] +
EI1,J1 + EI2,[J2] + EI1,I2,J1 + EI2,J1,[J2] (8)

EHF(Y) ≈ E[I1] + EI2 + EJ1 + EJ2 + E[I1],I2 + EI2,J1 + EJ1,J2 +
E[I1],J1 + EI2,J2 + E[I1],I2,J1 + EI2,J1,J2 (9)

EHF(P) ≈ E[I1] + EI2 + EJ1 + E[J2] + E[I1],I2 + EI2,J1 + EJ1,[J2] +
E[I1],J1 + EI2,[J2] + E[I1],I2,J1 + EI2,J1,[J2] (10)

EHF(X) + EHF(Y) - EHF(P) ≈ EHF(A) (11)
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mental groups as capped fragments. The above procedure can be easily
extended to larger systems, which may be decomposed into three or
more fragments. In general, the total energy of a large molecule at the
HF level can be approximately calculated by using the following
expression

Here the summation in the first term runs over all fragments. One should
note that for the central fragments, they are capped from both sides,
while the terminal fragments are capped from the left or the right.

In our previous work,47 we have derived the same equation as in 12
for approximately evaluating the correlation energies of large molecules,
based on the fast decay of pair correlation energies with the separation
between localized molecular orbitals (MO) and the transferability of
pair correlation energies within the structurally similar molecules. Of
course, this can also be derived from the fast decay property of the
atom pair interactions, if the correlation energy is partitioned into atom
pairs.73 As a result, eq 12 can be applied to approximately determine
the total energy of a large molecule at the HF and any post-HF levels.

It is important to know how to construct the geometries of capped
fragments and conjugated caps. To ensure the transferability of the
n-body interactions in the parent system and its subsystems, the
positions of all atoms in caps and fragments, except those added
hydrogen atoms, are kept to be the same as those in the parent molecule.
To construct a cap for a given fragment, we first choose its neighboring
subunit. If this subunit is connected to the rest of the system by a
covalent single bond X-Y (this holds true in most cases), we then
replace the X-Y bond with the X-H bond (X belongs to this subunit)
to form a complete cap. This added hydrogen atom is placed somewhere
between atoms X and Y. In this work, we use 1.07 Å for C-H, 1.00
for N-H, 0.96 for O-H, 1.18 for B-H, and 1.31 for S-H as defaults.
Thus, the position of this added hydrogen atom is unambiguously
determined. Of course, other atoms rather than the hydrogen atom may
also be chosen as “link” atoms. Here the hydrogen atom is chosen for
simplicity, as in combined quantum-mechanical/molecular-mechanics
approaches.74 If the X-Y bond is not a single bond, a more complicated
procedure for capping the X atom was suggested previously.47

It should be pointed out that eq 12 is applicable only for one-
dimensional or quasi-one-dimensional systems, in which the interactions
between nonbonded or distant fragments can be ignored. For two- or
three-dimensional macromolecules, two fragments separated by two
or more fragments in the sequence may also be adjacent to each other
in space (as shown in Scheme 1), thus then-body (n g 2) interaction
energies involving these spatially close fragments, which primarily
originate from “through-space” interactions (e.g., van der Waals or
electrostatic interactions), may be still significant. Clearly, these
“through-space”n-body (n g 2) interactions, which are called the
n-body corrections in the following, are not taken into account in eq
12. In general, the three- and four-body corrections are far less important
than the two-body correction if the fragments are reasonably chosen
and thus can be neglected in most cases. For a given molecule, the

two-body correction may be approximately evaluated by the formula
below:

Here the first term in the summation stands for the total energy of the
dimer composed of the capped fragmentsI andJ. To avoid overcounting
the two-body correction, each fragment here is capped with only
hydrogen atoms. If large caps are used for fragments, more complicated
procedures, other than eq 13, are required to obtain a reasonable estimate
to the “through-space” two-body interactions. Thus, one should be aware
that in deriving eqs 12 and 13 two different capping schemes are used,
respectively. To simplify the following discussions, only capping
schemes used in deriving eq 12 are described if necessary. To conclude,
we propose that the total energy of a general macromolecule at the HF
and any post-HF levels can be approximately determined using the
following equation:

For convenience, this approach is called as the energy-corrected MFCC
(or EC-MFCC) approach. Similarly, this formula should also be
applicable within the density functional theory (DFT) framework. Thus,
by performing calculations on capped fragments, conjugated caps, and
subsystems composed of two capped fragments, one should be able to
obtain a good approximation to the total energies of any sufficiently
large molecules. Since the two-body interaction energy will become
negligible when the separation between the two fragments is larger
than a given threshold, the number of the subsystems containing two
capped fragments to be calculated will increase only linearly with the
number of fragments. As a result, the overall computational cost of
the present method should scale linearly with the molecular size in a
sufficiently large molecule.

It would be useful to have some ideas on the applicability and
limitations of the present EC-MFCC method. Clearly, the accuracy of
this approach noticeably depends on whether the sizes of fragments
and caps are reasonably chosen or not. For saturated close-shell
molecules, satisfactory predictions of their total energies can usually
be obtained with relatively small fragments and caps. But for some
aromatic systems, where electrons are highly delocalized, significantly
larger fragments and caps may be required to achieve the same accuracy
as in their analogous saturated systems. However, for those systems
with very small gaps between highest occupied and lowest unoccupied
MOs, the present method may even break down. A feasible method to
validate the present approach is to check the dependence of the
calculated total energy on the size of fragments and caps for a given
system. If the calculated energy is convergent within a given accuracy,
it should be a good approximation to the total energy.

2.3. Geometry Optimization with the EC-MFCC Approach. With
various linear-scaling methods, ab initio single-point calculations on
molecules containing hundreds of atoms are now feasible. However,
ab intio geometry optimization of such large molecules is not yet
routinely possible, especially at the electron correlation level. With the
simple EC-MFCC approach, we will show that ab initio geometry
optimizations for very large systems can now be performed at the HF
(or DFT) and post-HF levels with fairly low computational resources,
which is likely to have significant impacts on many areas outside
traditional computational chemistry.

For small- and medium-sized molecules, geometry optimization
techniques such as the quasi-Newton75-77 and conjugated gradient

(74) Singh, U. C.; Kollman, P.J. Comput. Chem.1986, 7, 718.

(75) Schlegel, H. B.J. Comput. Chem.1982, 3, 214.
(76) Pulay, P.; Fogarasi, G.J. Chem. Phys.1992, 96, 2856.
(77) Farkas, O.; Schlegel, H. B.J. Chem. Phys.1999, 111, 10806.

Scheme 1

E ) ∑
I

E(cappedI) - ∑ E(conjugated caps) (12)

∆E(2) ) ∑
I
∑

J

[E(cappedI + cappedJ) - E(cappedI) -

E(cappedJ)] (13)

E ) ∑
I

E(cappedI) - ∑ E(conjugated caps)+ ∆E(2) (14)
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methods78 are now well-established at the HF and post-HF levels, based
on the availability of analytical gradients. In fact, these optimization
algorithms can be directly employed for our purpose, with only the
energy of the system calculated with eq 14 and the gradient of the
system calculated with the equation below:

It should be pointed out that only the coordinates of the real system
are involved in eq 15, and the coordinates of the “link” atoms
(hydrogen) in capped fragments or conjugated caps are not considered
(because the relative positions of the “link” atoms are unambiguously
determined by the positions of the related atoms in the real system, as
described earlier). Since all the gradient components of various
subsystems can be obtained analytically, the gradient of the whole
system can be computed readily. In the present work, we choose the
quasi-Newton method75-77 to be the optimization algorithm. The BFGS
procedure is used to update the Hessian matrix,78 and a line search
procedure is performed at each optimization step except the first one.
Both Cartesian coordinates and internal coordinates can be used in our
optimization program.

3. Results and Discussions

In this section, we will first test the accuracy and applicability
of the EC-MFCC approach by applying it to obtain approximate
total energies for a broad range of medium and large-sized
molecules within the HF and MP2 theories. The energy

calculations are carried out directly with the Gaussian 0372

program. Next, we will employ the EC-MFCC optimization
program to obtain the optimized structures for long oligomers
of trans-PA and long BN nanotubes at the MP2 and HF levels,
respectively. Finally, we will demonstrate that the EC-MFCC
approach can be used to estimate the heats of formation for
some organic systems with good accuracy.

3.1. Total Energies Predicted by the EC-MFCC Approach.
In this subsection, the EC-MFCC approach is applied to a variety
of molecules to obtain their total energies at the HF and MP2
levels. The selected systems, some of which are shown in Figure
2, include saturated and conjugated molecules and also exhibit
sufficient structural complexity. Hereafter, the HF (MP2)
energies without two-body corrections are denoted as MFCC-
HF (MP2) energies for simplicity. If the closest atom-atom
distance between the two fragments is less than a given threshold
(R Å), the two-body correction should be considered for this
pair of fragments. Obviously, a short distance threshold (R1 Å)
should be used for the van der Waals interaction, and a much
long distance threshold (R2 Å) should be used for the long-
range electrostatic interaction. Thus, for those molecules without
charged functional groups, the HF (MP2) energies with two-
body corrections are denoted as EC-MFCC(R1)-HF (MP2)
energies, since only the van der Waals distance threshold is
required to be defined, while for those molecules containing
charged groups, two distance thresholds are defined. In this case,
the HF (MP2) energies are abbreviated as EC-MFCC(R1,R2)-
HF (MP2) energies. In all MP2 calculations, the core orbitals
are frozen and the basis set is the same as that used in the

(78) Leach, A. R.Molecular Modelling: Principles and Applications; Addison
Wesley Longman: London, 1996.

Figure 2. Some selected systems.
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corresponding HF calculations. The Cartesian coordinates and
conventional HF or MP2 energies of all compounds studied are
presented in the Supporting Information.

Since in the EC-MFCC treatment a fragmentation scheme is
required for each system before actual calculations can be done,
we have displayed fragmentation schemes for most of the
studied systems in Figure S1 of the Supporting Information.
For other systems studied, a brief description on how to fragment
them will be mentioned elsewhere. A general guide for
partitioning a large molecule we adopt here is that fragments
should be of roughly equal size and should contain at least two
non-hydrogen atoms. For each fragment, each cap is chosen as
its neighboring fragment saturated by necessary hydrogen atoms
in this work for simplicity. In a homologous series of molecules,
the sizes of fragments are chosen to be the same for easy
comparison.

3.1.1. One-Dimensional and Quasi-One-Dimensional Sys-
tems. Among this category of systems, the selected mole-
cules include: dotriacontane (C32H66), â-carotene, planar and
titled poly(p-phenylene vinylene) (PPV) (n ) 3-6), glycine
peptides (gly)n (n ) 6, 8, 10, 12) and their zwitterions, and BN
single-walled nanotubes (SWNTs) of zigzag (6,0) and armchair
(3,3). For most of these compounds, their geometries are
optimized by using the conventional HF method with various
basis sets.

For selected one-dimensional systems, the energy differences
between the conventional HF (MP2) energies and the corre-
sponding EC-MFCC values are summarized in Table 2. Both
MFCC and EC-MFCC(8) or EC-MFCC(8,30) values at the
HF or MP2 level are presented for comparison. In the last
column of Table 2, the number of basis functions included in
the largest subsystem is given for each species. One can
see that the deviations of the EC-MFCC(8) energies relative to
those of the conventional HF or MP2 energies are less than 4

mH for all these apolar species. Actually, except for the
zwitterionic form of (gly)n, the calculated MFCC energies are
almost identical to the EC-MFCC(8) values at both the HF
and MP2 levels for all other systems, suggesting that the
two-body corrections are insignificant in these systems. For
saturated dotriacontane and glycine peptides without charged
residues, the EC-MFCC(8) energies are consistent with the
conventional values within 0.1 mH at the HF level and within
0.5 mH at the MP2 level. For glycine peptides zwitterions with
one positive charge in its N-terminal residue and one negative
charge in its C-terminal residue, the accuracy of the MFCC-
HF and MFCC-MP2 energies is significantly lower than that
for their uncharged counterparts. This is because the electrostatic
interaction between the N-terminal residue and the C-terminal
residue is a long-range effect, and thus the two-body correction
between the two terminal fragments must be considered. By
setting two distance thresholdsR1 and R2 to be 8 and 30 Å,
respectively, the calculated EC-MFCC(8,30) energies are found
to deviate from the conventional HF and MP2 energies by at
most 1.6 and 2.6 mH, respectively, for all glycine peptides
zwitterions under study. These results demonstrate that the
EC-MFCC scheme could predict quite accurate ground-state
total energies for one-dimensional systems without or with
charged groups.

To investigate how the accuracy of the present treatment
varies with the size of fragments, the difference between the
conventional HF (MP2) energy and the corresponding
EC-MFCC value for (gly)12 zwitterion with the size of each
fragment is shown in Figure 3. The calculations are performed
with the 6-31G basis set. In the EC-MFCC calculations, we
have considered the size of each fragment to be of about one,
two, and three residues. From Figure 3, one can see that the
accuracy of the EC-MFCC approach increases rapidly when the
fragment size is enlarged, and for (gly)12 zwitterion the fragment

Table 2. Energy Differences (∆E) between the Conventional HF (MP2) and the Corresponding EC-MFCC Energies for Selected
One-Dimensional Systems

∆E (mH)b

molecule basis seta MFCC EC-MFCC(8)c

basis functions of the
largest subsystem

dotriacontane 6-31G* (612) -0.01 (0.23) -0.04 (-0.13) 160
â-carotene 6-31G (472) 0.05 (0.83) 0.06 (0.74) 209

PPV-Planar
n ) 3 cc-pVDZ (436) 0.05 (0.26) 0.08 (0.24) 304
n ) 4 cc-pVDZ (578) 0.11 (0.53) 0.17 (0.50) 304
n ) 5 cc-pVDZ (720) 0.16 0.26 304
n ) 6 cc-pVDZ (862) 0.22 0.34 304

PPV-Titled
n ) 3 cc-pVDZ (436) 0.04 (0.22) 0.07 (0.20) 304
n ) 4 cc-pVDZ (578) 0.08 (0.44) 0.14 (0.41) 304
n ) 5 cc-pVDZ (720) 0.12 0.21 304
n ) 6 cc-pVDZ (862) 0.16 0.27 304

H(NHCH2CO)nOH
n ) 6 6-31G (265) 0.15 (0.24) -0.09 (-0.03) 196
n ) 8 6-31G (349) 0.46 (0.71) -0.09 (0.06) 200
n ) 10 6-31G (433) 0.84 (1.27) -0.04 (0.24) 200
n ) 12 6-31G (517) 1.26 (1.87) 0.05 (0.46) 200

+H2(NHCH2CO)nO-

n ) 6 6-31G (265) 32.65 (34.16) 1.53 (2.38) 198
n ) 8 6-31G (349) 27.32 (29.12) 1.39 (2.48) 202
n ) 10 6-31G (433) 24.36 (26.39) 1.23 (2.50) 202
n ) 12 6-31G (517) 22.58 (24.85) 1.22 (2.66) 202

a The total number of basis functions included in parentheses.b The relative energies with respect to corresponding conventional energies, and the relative
energies from EC-MFCC-MP2 calculations included in parentheses.c For zwitterions of glycine peptides, EC-MFCC(8,30)-HF (MP2) energies are given
instead.
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containing about two residues can achieve satisfactory results
with errors of less than 3 mH.

For selected quasi-one-dimensional systems, zigzag (6,0) and
armchair (3,3) BN SWNTs, the calculated EC-MFCC energies
and corresponding conventional results (if available) are listed
in Table 3. Both ends of these two kinds of BN SWNTs are
saturated by hydrogen atoms. In our EC-MFCC calculations,
each fragment in all the tubes is chosen to contain four repeating
units, that is, (B6N6)4. As seen from Table 3, the calculated
MFCC-HF energies deviate from the conventional HF values
by less than 1.2 mH for two zigzag (6,0) tubes withn ) 12
and 16, and by 0.2 mH for then ) 16 armchair (3,3) tube. The
MFCC-MP2 energies are found to have an accuracy similar to
the corresponding MFCC-HF values for the smallest tube of
both types. As expected, the accuracy of the EC-MFCC(10)
energies at the HF or MP2 level is even higher than that of the
MFCC energies. HereR1 ) 10 Å implies that the two-body
corrections between each fragment and its next-nearest neigh-
boring fragments are included. It should be mentioned that the
size of fragments for nanotubes should be significantly larger
than that for the chainlike oligomers described previously if a
similar accuracy is required for these two different categories
of systems. For longer zigzag (6,0) and armchair (3,3) tubes
with n > 32, their total energies are evaluated directly from
energies of those subsystems, which already occur in then )
32 tube. If the energy per unit (BN) can be defined as the energy
difference between successive nanotubes divided by 6, it is
predicted from the EC-MFCC(10) calculations at the HF/3-21G
level to be-78.82586 au and-78.81911 au for the infinite
zigzag (6,0) and armchair (3,3) tubes, respectively. These values
are almost equal to the extrapolated values,-78.82589 au and
-78.81910 au, from conventional HF calculations on smaller
tubes (n ) 6-17).79 Furthermore, for the infinite zigzag (6,0)
tube the energy per unit at the MP2 level is-78.97234 au from
the corresponding EC-MFCC calculations.

3.1.2. Biological Molecules.The selected biological mol-
ecules include indinavir (an HIV-protease inhibitor), two base
pairs (adenine-thymine (A-T) and cytosine-guanine (C-G)),
and six protein structures from the protein data bank (PDB).80

The geometries of six proteins are the same as those in Exner
and Mezey’s recent work.14 The HF (or MP2) energies of all

these molecules obtained from the conventional approach and
the EC-MFCC approach are summarized in Table 4. For
indinavir, base pairs A-T and G-C, the EC-MFCC(8) energies
at the HF and MP2 level are quite satisfactory, differing from
their conventional counterparts by less than 1.0 mH. By
comparing MFCC values with corresponding EC-MFCC results,
however, one can see that the two-body correction, which is
mainly caused by the van der Waals interaction for indinavir
and the hydrogen-bond interaction for base pairs, is significant
for these molecules and has to be taken into account. For six
proteins, the EC-MFCC(8,30) approach is still very satisfactory
in reproducing the conventional HF energies of the first five
with the mean absolute error of a few millihartree, but is less
satisfactory for the last one, EETI II. The reason the EC-MFCC
approach gives rise to relatively larger errors for EETI II may
be attributed to the fact that in this system there are seven
positive or negative charges on different residues. In this case,
the effect of those remote charged fragments on a given fragment
may not be well-mimicked by only summing the two-body
interactions between this fragment and each of those charged
fragments. The overall performance of the present approach for
selected biological molecules is competitive with some existing
fragment-based methods such as the field-adapted ADMA
approach14 and the FMO method.20-23 The difference between
MFCC and EC-MFCC(8,30) results strongly indicates that the
inclusion of the two-body correction, which is caused by the
electrostatic and van der Waals interactions, is very important
for biological molecules such as proteins, especially those polar
and highly charged molecules.

3.2. Optimized Structures for Long Oligomers of trans-
Polyacetylene and BN Nanotubes.To illustrate the application
of the EC-MFCC optimization method, we have performed full
geometry optimizations for two interesting one-dimensional
systems, oligomers oftrans-polyacetylene (ortrans-oligoenes)
and BN nanotubes of varying lengths, with the optimization
algorithm described in the preceding section. As discussed
above, these two kinds of systems can be well treated with the
EC-MFCC approach. Furthermore, it is well-known that the
electronic structure oftrans-PA is closely related to its C-C
bond length alternation. A number of experimental and theoreti-
cal studies have been conducted to resolve this issue.81-86

Theoretically, one usually obtains by extrapolation the structure
of an infinite chain (trans-PA) from those oftrans-oligoenes.
Since the correlation effects significantly reduce the bond length
alternation in shorttrans-oligoenes,84-86 the structures of long
trans-oligoenes must be optimized at the post-HF level, which
limits the application of standard quantum chemistry calculations
to small- and medium-sized oligomers. For BN nanotubes, the
zigzag (6,0) BN SWNT with a diameter of 0.5 nm has been
experimentally observed by Bengu and Marks.87 A recent
theoretical study79 has provided the fully optimized geometries
at the HF/3-21G level for nanotubes with 6-17 repeating units,

(79) Xu, H.; Ma, J.; Chen, X.; Hu, Z.; Huo, K.; Chen, Y.J. Phys. Chem. B
2004, 108, 4024.

(80) Berman, H. M.; Westbrook, J.; Feng, Z.; Gilliland, G.; Bhat, T. N.; Weissig,
H.; Shindyalov, I. N.; Bourne, P. E.Nucleic Acids Res.2000, 28, 235.

(81) Fincher, C. R., Jr.; Chen, C.-E.; Heeger, A. J.; MacDiarmid, A. G.Phys.
ReV. Lett. 1982, 48, 100.

(82) Yannoni, C. S.; Clarke, T. C.Phys. ReV. Lett. 1983, 51, 1191.
(83) Kahlert, H.; Leitner, O.; Leising, G.Synth. Met.1992, 83, 179.
(84) Fogarasi, G.; Liu, R.; Pulay, P.J. Phys. Chem.1993, 97, 4036.
(85) Hirata, S.; Torii, H.; Tasumi, M.J. Chem. Phys.1995, 103, 8964.
(86) Choi, C. H.; Kertesz, M.J. Chem. Phys.1997, 107, 6712.
(87) Bengu, E.; Marks, L. D.Phys. ReV. Lett. 2001, 86, 2385.

Figure 3. Difference between the conventional HF (MP2) energy and the
EC-MFCC(8,30)-HF(MP2) values for (gly)12 zwitterion for fragments with
different sizes.
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but optimized structures for longer nanotubes are required to
extrapolate the geometry of an infinite nanotube.

For the trans-oligoenes H(C2H2)nH (n ) 16, 32) and the
zigzag (6,0) BN nanotubes, H6(B6N6)nH6 (n ) 16, 32), their
structures optimized by the EC-MFCC approach at the MP2/
6-31G* and HF/3-21G levels, respectively, are displayed in
Figure 4. For trans-oligoenes, each fragment contains two
CdC bonds, and each cap contains three CdC bonds. The
fragmentation and capping scheme for BN nanotubes are the
same as described earlier. For comparison, we also display in
Figure 4 the geometry data of then ) 16 trans-oligoene and
the n ) 16 nanotube optimized by the conventional MP2 and
HF methods, respectively. As one can see, for these two
medium-sized molecules, the geometrical parameters derived
from the EC-MFCC approach are remarkably close to those
from the conventional methods. The average deviation is about
(0.001 Å for the bond lengths,(1° for the bond angles, and
(2° for the dihedral angles. Thus, the EC-MFCC approach is
ideally suitable for these two systems. As seen from the
optimized structure of thetrans-oligoene H(C2H2)32H, the
CdC and C-C bond lengths converge quickly from 1.347 to
1.366 Å and from 1.448 to 1.431 Å, respectively, as their
positions go inner. Since the calculated CdC and C-C bond
lengths in the central part of then ) 32 trans-oligoene are equal
to those in then ) 16 trans-oligoene, the CdC and C-C bond
lengths in thetrans-PA can be predicted to be 1.366 and 1.431

Å, respectively, which is in good agreement with the observed
bond lengths (1.36 and 1.44 Å). In contrast, a previous study
using the extrapolation technique predicted the CdC and C-C
bond lengths in thetrans-PA to be 1.373 and 1.423 Å at the
same theoretical level. For then ) 32 BN nanotube, one can
see that the geometrical parameters of the hexagon converge
rapidly to constant values as it moves toward the middle of the
tube, and both the terminal and central hexagons have almost
the same geometry data as those in the shortn ) 16 tube. Thus,
on the basis of the optimized structure for then ) 32 BN
nanotube the geometries of longer BN nanotubes can be
reasonably constructed.

3.3. The Estimation of the Standard Heats of Formation
for Some Organic Compounds.It has been known that most
molecular properties of large molecules, such as the standard
heats of formation∆Hf,T

0 , can be derived from the additivity of
bond properties or group properties.70,71In the group additivity
scheme, a group is generally defined as a polyvalent atom in a
molecule together with all of its ligands. The values for the
contributions of groups to molecular properties are obtained
from multilinear regression analyses of the thermochemical data
of a large number of known compounds. By summing the
contributions of all the groups in a given molecule, the molecular
property of an unknown compound can be estimated. For general
compounds, the simple group additivity scheme is often
modified by introducing several types of corrections, which are

(88) Lide, D. R.; Kehiaian, H. V.Handbook of Thermophysical and Thermo-
chemical Data; CRC Press: Boca Raton, FL, 1994.

(89) Dean, J. A.Lange’s Handbook of Chemistry; McGraw-Hill: New York,
1999.

Table 3. Energy Differences (∆E) between the Conventional HF (MP2) and Corresponding EC-MFCC Energies for Two Types of BN
SWNTs with the 3-21G Basis Set

∆E (or total energy)a

molecule basis functions MFCC EC-MFCC(10)
basis functions of the

largest subsystem

Zigzag (6,0)
n ) 12 1320 0.43 (0.92) -0.12 (0.03) 912
n ) 16 1752 1.11 (-7587.96552) 0.16 (-7587.96714) 912
n ) 32 3480 -15141.14118 (-15169.30735) -15141.14372 (-15169.31190) 912
n ) 64 6936 -30275.70261 (-30331.99105) -30275.70834 (-30332.00145) 912
n ) 128 13848 -60544.82547 (-60657.35844) -60544.83757 (-60657.38056) 912

Armchair (3,3)
n ) 16 1752 -0.16 0.01 912
n ) 32 3480 -15139.94237 -15139.94178 912
n ) 64 6936 -30273.21193 -30273.21048 912
n ) 128 13848 -60539.75106 -60539.74789 912

a For tubes (n ) 32, 64, 128) without conventional energies and zigzag (6,0) tube (n ) 16) without conventional MP2 energy, the total energies from
MFCC and EC-MFCC calculations are presented. The energy differences (or total energies) from EC-MFCC-MP2 calculations are included in parentheses.

Table 4. Energy Differences (∆E) between the Conventional HF (MP2) and Corresponding EC-MFCC Energies for Selected Biological
Molecules

∆E (mH)c

moleculea basis setb MFCC EC-MFCC (8,30)
basis functions of the

largest subsystem

indinavir 6-31G (499) 5.20 (9.84) 0.72 (1.07) 215
adenine-thymine (A-T) 6-31G** (660) 19.42 (27.36) -0.30 (-0.16) 345
cytosine-guanine (G-C) 6-31G** (655) 44.62 (51.67) -0.23 (-0.05) 360
crambin (1cnr) 3-21G (3597) 670.02 4.93 594
gramicidin A ion channel (1grm) 3-21G (3000) 277.96 0.68 711
R-conotoxin pni1 (1pen) 3-21G (1192) -1.31 4.43 555
R-conotoxin pnib fromConus pennaceus(1akg) 3-21G (1211) 7.88 6.61 555
R-conotoxin mii (1m2c) 3-21G (1268) 51.193 -10.34 547
trypsin inhibitor II (EETI II) (2eti) 3-21G (2164) 486.19 -38.09 604

a The fragmenting scheme for all these six proteins is similar to that adopted for glycine peptides (see Figure S1). The size of each fragment is about three
residues.b The total number of basis functions included in parentheses.c The relative energies with respect to conventional HF energies, and the relative
energies from EC-MFCC-MP2 calculations included in parentheses.
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from the interactions of nonbonded, next-nearest neighboring
groups. This group additivity scheme can provide satisfactory
∆Hf,T

0 (and molar heat capacity, etc.) for structurally relatively
simple organic compounds, with the average deviation of(2.0
kJ/mol.70,71 But for structurally complex systems, values of
estimated∆Hf,T

0 deviate by(12 kJ/mol from the experimen-
tally observed values.70,71 The success of eq 14 in predicting
the total energy suggests an alternative approach for estimating
the standard heats of formation of molecules. If the two-body
correction can be neglected (this approximately holds for
medium-sized molecules), the standard heats of formation of
gas-phase species can be approximately predicted from the
following equation:

Clearly, this MFCC approach differs from the group additivity
scheme in two ways. First,∆Hf,T

0 of an unknown compound
can be directly estimated from related small molecules with
experimental data. Second, since capped fragments or conjugated
caps often contain several groups defined above, most of next-
nearest neighboring interactions of groups are automatically
incorporated. To illustrate the application of the MFCC ap-
proach, we have estimated values of∆Hf,T

0 at T ) 298K for 18
organic molecules shown in Figure 5, with the results listed in
Table 5. The fragmentation and capping schemes for all these

molecules are also shown in Figure 5, so that readers may easily
do the calculations by themselves. For example,∆Hf,T

0 of
1-decanol can be estimated from those of 1-heptanol, heptane,
and butane:

From Table 5, one can see that for all studied systems the
mean deviation of estimated∆Hf,298

0 is about(2.3 kJ/mol. In
general, for structurally simple compounds the accuracy of the
MFCC approach is comparable to that of the group additivity
approach, but for more complex systems the MFCC approach
may show better performance. For instance, for bibenzyl the
deviation of∆Hf,298

0 predicted from the present approach is 5.8
kJ/mol, while that from the group additivity approach is 7.9
kJ/mol.70 Furthermore, the MFCC approach can give correct
predictions on the relative order of∆Hf,T

0 for some isomeric
species. For example, the relative magnitude of∆Hf,T

0 between
2-methylnonane and 5-methylnonane is correctly predicted with
the MFCC approach. On the other hand, it should be pointed
out that the MFCC approach is only applicable for molecules
with four or more polyvalent atoms (or groups). In some cases,
where the experimental thermochemical data of subsystems are
not available, the MFCC approach could not be used, too. The
combination of the present approach with the traditional group

Figure 4. Optimized structure oftrans-oligoenes (n ) 16, 32) and zigzag (6,0) BN SWNTs (n ) 16, 32). Thetrans-oligoenes are optimized at the MP2/
6-31G* level, and BN SWNTs are optimized at the HF/3-21G level. The bond lengths (in Å) obtained by the conventional optimization methods at the same
theoretical level are given in parentheses (the data of then ) 16 BN SWNT are from ref 79).

∆Hf,T
0 ) ∑

I

∆Hf,T
0 (cappedI) - ∑ ∆Hf,T

0 (conjugated caps)

(16)

∆Hf,T
0 (1 - decanol)) ∆Hf,T

0 (1 - heptanol)+

∆Hf,T
0 (heptane)- ∆Hf,T

0 (butane)) (-336.4)+ (-187.7)-
(-125.6)) -398.5 kJ/mol (17)
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additivity approach may be used to predict the thermochemical
data for a large number of structurally complex compounds with
good accuracy.

4. Conclusions

In this work, we present an efficient fragment-based approach
for predicting the total energies of macromolecules at the HF
and post-HF levels. The physical foundation of this approach

is revealed by a new energy decomposition analysis of the total
HF energy proposed in this work. Within this approach, the
total energy of a macromolecule can be directly obtained from
energy calculations on a series of subsystems, which are capped
fragments, conjugated caps, and subsystems composed of two
capped fragments. Since the computational cost of the present
method scales linearly with the molecular size in large mol-
ecules, the total energy of systems with hundreds or thousands

Figure 5. Selected organic compounds for the estimation of∆Hf,T
0 . The fragmentation and capping schemes are also displayed. The cut bond is denoted by

a broken line, and a cap is denoted by a frame.

Table 5. Standard Heats of Formation ∆Hf,T
0 (kJ/mol) for Some Organic Molecules at T ) 298 K

molecule exptla estimatedb molecule exptla estimatedb

hexadecane -374.8 -373.4 (1.4) 2,2-dimethyl-trans-3-hexene -109.5 -110.3 (-0.8)
1-hexadecene -248.5 -247.3 (1.2) 2,2,3,3-tetramethylpentane -237.1 -237.4 (-0.3)
1-decanol -396.4 -398.5 (-2.1) 2,2,3,4-tetramethylpentane -236.9 -238.4 (-1.5)
decanal -330.9 -326.1 (4.8) decylbenzene -138.6 -137.0 (1.6)
1-decanethiol -211.5 -212.1 (-0.6) butylcyclohexane -213.3 -212.6 (0.7)
tetradecanenitrile -174.9 -174.4 (0.5) 3-ethylphenol -146.1 -149.1 (-3.0)
methyl dodecanoate -614.8 -616.5 (-1.7) bicyclohexyl -215.7 -217.8 (-2.1)
2-methylnonane -259.9 -256.9 (3.0) biphenyl 181.4 185.8 (4.4)
5-methylnonane -258.6 -253.4 (5.2) bibenzyl 135.6 141.4 (5.8)

a Values from refs 88 and 89.b The relative standard heats of formation with respect to the corresponding experimental value included in parentheses.
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of atoms can now be approximately computed at the ab initio
HF and MP2 levels with existing quantum chemistry programs.
Our test calculations for a variety of medium-sized and even
quite large-sized systems show that the present approach is able
to reproduce the conventional HF and MP2 energies within a
few millihartree in most cases. The accuracy of the present
approach is competitive with other sophisticated linear-scaling
methods.3,7,12-14,20-66 Furthermore, with the EC-MFCC opti-
mization technique described in this work, now we can perform
geometry optimizations for large systems with hundreds of
atoms at the HF or post-HF level. The optimized structures of
very long oligomers oftrans-PA and BN nanotubes have been
obtained with this optimization technique, which are beyond
the reach of traditional computational methods. It is expected
that the use of the present optimization technique will greatly
expand the application ranges of computational chemistry. In
addition, the EC-MFCC approach is also applied to estimate
the heats of formation for a number of organic systems.
Satisfactory results can be obtained, if the molecule under study
is properly fragmented and capped. Therefore, the EC-MFCC
method provides an alternative approach to the traditional
additivity rules based on either bond or group contributions for
the estimation of thermochemical properties.

Compared to other fragment-based methods, the present
approach has several advantages. First, the approach may be
applicable to any existing quantum chemistry methods including
HF, MP2, or CCSD, and even DFT methods. Second, the
approach is computationally the simplest one among existing
fragment-based methods or alternative linear-scaling methods.
For example, the approach does not really construct the total
density matrix of the whole macromolecule from the density
matrixes of the capped fragments, like the ADMA12-14 approach
and other methods. In addition, the parallel implementation of
the present approach could be highly efficient because calcula-
tions on constructed subsystems can be carried out indepen-
dently. We would also like to address some inherent limitations
of the EC-MFCC approach. This approach is not a “black-box”
method like some linear-scaling methods,32-38,59-65 since the

user needs to construct fragments and caps manually. Of course,
for a group of molecules made up of limited building blocks
such as proteins, polymers, and nanotubes, an automated
procedure for fragmenting these molecules and capping the
fragments is feasible. The accuracy of this approach noticeably
depends on the size of fragments and caps selected. Hence, one
should calibrate the accuracy of this approach before applying
the present approach to unknown large systems. In addition,
the present approach may be less satisfactory for some polar
and highly charged molecules, as discussed in subsection 3.1.2.
Furthermore, the present approach may even break down for
some conjugated systems and radicals, in which electrons are
highly delocalized in the whole system. It should be noted that
other linear-scaling approaches3,7,12-14,20-66 might also face this
problem.

To summarize, the EC-MFCC approach is demonstrated to
be capable of predicting total energies and structures of very
large molecules with good accuracy at the ab initio HF and
post-HF levels. Furthermore, the present approach provides an
appealing approach for chemists to understand and predict the
physical and chemical properties of a huge amount of chemical
compounds. Future developments would make this approach a
promising tool for performing quantum chemistry calculations
on very large molecules.
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